Seasonal differences in the response of Arctic cyclones to climate change in CESM1

نویسندگان

  • Holland
  • Hodges
چکیده

Unprecedented warming in the Arctic has led to a dramatic reduction in both the extent and thickness of Arctic sea ice (Stroeve et al. 2011), opening up opportunities for business in diverse sectors such as fossil fuel and mineral extraction, shipping and tourism (Jung et al. 2016). Industrial activities in the Arctic are expected to be subject to high levels of investment over the coming decades (Emmerson and Lahn 2012). As a result, there has been an increase in the exposure of humans and infrastructure to environmental risks in the Arctic. Unlike the mid-latitude storm tracks of the North Atlantic and Pacific, which are most active during winter, in an area of the central Arctic, known as the Arctic Ocean cyclone maximum (AOCM) synoptic scale cyclones are most numerous during summer (Serreze 1995; Serreze and Barrett 2008) (see Figs. 1, 2). However, Arctic cyclones are most dynamically intense during winter (Zhang et al. 2004). The source region of Arctic cyclones also differs depending on the season, with summer cyclones largely originating over the Eurasian continent (Reed and Kunkel 1960; Crawford and Serreze 2016) and winter cyclones largely originate from the North Atlantic and North Pacific (Sorteberg and Walsh 2008; Simmonds et al. 2008) (Figure S1, S2 & S3). The dramatic warming of the Arctic over the last three decades has reduced both the thickness and area covered by summer sea ice, leaving Arctic waters navigable by shipping exactly during this period of seasonally enhanced cyclone activity in the AOCM region. Therefore, understanding changes in storminess in the region is Abstract The dramatic warming of the Arctic over the last three decades has reduced both the thickness and extent of sea ice, opening opportunities for business in diverse sectors and increasing human exposure to meteorological hazards in the Arctic. It has been suggested that these changes in environmental conditions have led to an increase in extreme cyclones in the region, therefore increasing this hazard. In this study, we investigate the response of Arctic synoptic scale cyclones to climate change in a large initial value ensemble of future climate projections with the CESM1-CAM5 climate model (CESM-LE). We find that the response of Arctic cyclones in these simulations varies with season, with significant reductions in cyclone dynamic intensity across the Arctic basin in winter, but with contrasting increases in summer intensity within the region known as the Arctic Ocean cyclone maximum. There is also a significant reduction in winter cyclogenesis events within the Greenland–Iceland–Norwegian sea region. We conclude that these differences in the response of cyclone intensity and cyclogenesis, with season, appear to be closely linked to changes in surface temperature gradients in the high latitudes, with Arctic poleward temperature gradients increasing in summer, but decreasing in winter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of internal variability on projections of Sahel precipitation change

The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on...

متن کامل

Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains)

.Detection and Attribution of Changing in Seasonal variability cause of climate change (Case study: Hillsides of Central Southern Alborz Mountains) Abstract One of the most important challenges for the human communities is Global Warming. This vital problem affected by Climate Change and corresponding effects. Thus this article attempted to assess the trend of real climate variables from syno...

متن کامل

Predicting the impact of climate change on the distribution of Pistacia atlantica in the Central Zagros

Predicting the potential distribution of plants in response to climate change is essential for their conservation and management. This study aimed at predicting the effect of climate change on the geographical distribution of Pistacia atlantica in Chaharmahal & Bakhtiari province in the central Zagros region. In this study, we used 19 Bioclimatic variables derived from rainfall and temperature ...

متن کامل

New view of Arctic cyclone activity from the Arctic system reanalysis

Arctic cyclone activity is analyzed in 11 year (2000–2010), 3-hourly output from the Arctic System Reanalysis (ASR) interim version. Compared to the global modern era reanalyses (European Centre for Medium-Range Weather Forecasts Reanalysis (ERA)-Interim, Modern Era Retrospective Analysis for Research and Applications, and National Centers for Environmental Prediction-Climate Forecast System Re...

متن کامل

The Effect of Tropical Cyclones on Climate Change Engagement

Personal experience can influence our attitudes and actions concerning climate change. This paper examines the experience-perception link in relation to tropical cyclones using a distinctly revealed preference approach, mitigating biases of prior research in this area. Specifically, we study how people alter their internet searches related to climate change in response to tropical cyclones. Usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017